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Resumen: Las pruebas de software basadas en búsqueda (SBST) pretenden optimizar 
la generación de casos de prueba mediante metaheurísticas, maximizando métricas de 
calidad como la cobertura de código. Este estudio examina la eficacia de la evolución 
diferencial (ED) en la generación automática de conjuntos de pruebas que maximizan 
la cobertura. Se diseñó un estudio empírico exploratorio, utilizando funciones basadas 
en Python para evaluar el rendimiento de la ED. Los resultados obtenidos destacan 
el potencial de la ED en comparación con el recocido simulado (SA), demostrando 
mejoras tanto en la cobertura alcanzada como en el número de evaluaciones de 
funciones objetivo necesarias.

Palabras clave: pruebas de software basadas en búsqueda, evolución diferencial, 
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Abstract: Search-Based Software Testing (SBST) aims to optimize test case generation 
through metaheuristics, maximizing quality metrics such as code coverage. This study 
examines the effectiveness of Differential Evolution (DE) in generating test suites 
that maximize coverage automatically. An exploratory empirical study was designed, 
utilizing Python-based functions to evaluate the performance of DE. The obtained 
results highlight DE’s potential compared to Simulated Annealing (SA), demonstrating 
improvements in both achieved coverage and the number of objective function 
evaluations required.
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•	 PSO: Particle swarm optimization
•	 ACO: Ant colony optimization
•	 FEs: Fitness function evaluations
•	 NP: Population size (DE parameter)
•	 CR: Crossover probability
•	 F: Scaling factor
•	 UML: Unified modeling language

Introduction

Software testing plays a fundamental role in software development, aiming to detect 
faults, evaluate performance, and assure the reliability and quality of the final product. 
During this phase of the development cycle, emphasis is placed on formulating test 
case suites to verify software compliance with predefined requirements and correct 
functionality across various scenarios. Despite its crucial role, software testing typically 
requires significant time and resources, posing challenges particularly in extensive 
projects or complex systems, where managing the balance between constraints, 
essential requirements, and the inherent imprecision of these requirements is vital 
(Harman, Mansouri, & Zhang, 2001).

Over time, test design has evolved significantly, driven by emerging tools and techniques 
that have radically transformed the testing landscape. Prominent among these are 
automation and optimization methods. Tools such as Selenium (2023), widely used 
for test design and management, and optimization approaches employed in Search-
Based Software Engineering (SBSE) have become essential (Harman & Jones, 2001). 
SBSE does not necessarily seek definitive solutions but instead employs metaheuristic 
algorithms to generate optimal or near-optimal test suites, effectively automating and 
optimizing test processes (Harman, Jia, & Zhang, 2015).

Metaheuristics employed within SBST can be categorized as traditional single-point 
methods, such as Simulated Annealing (SA), population-based evolutionary algorithms, 
such as Genetic Algorithms (GA) and Differential Evolution (DE), and population-based 
swarm intelligence algorithms (Kennedy and Eberhart, 2001), such as Particle Swarm 
Optimization (PSO) and Ant Colony Optimization (ACO). These techniques explore the 
solution space efficiently, optimizing objectives like code coverage, test case reduction, 
and fault detection (Hernández-Suárez, 2024). DE (Storn and Price, 1997) has gained 
significant attention due to its straightforward structure, robustness, and efficacy in 
handling continuous optimization problems. These characteristics make DE suitable for 
automatically generating test suites that maximize code coverage. In order to evaluate 
DE’s potential, specifically in test suite generation, an exploratory empirical study was 
designed using Python-based functions. Results indicate DE’s superior performance 
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compared to SA, reinforcing its capability to enhance code coverage significantly and 
thus emphasizing its suitability for SBST.

The structure of this document is as follows: Section 2 describes the problem statement; 
Section 3 presents related works; Section 4 explains the proposed approach; Section 
5 presents the experimental design and results, while Section 6, the discussion; finally, 
conclusions and future work are outlined in Section 7.

Problem statement

Code coverage is a metric used in software testing to measure the extent to which 
the source code of a program is executed when a test suite runs (Myers, Sandler, & 
Badgett, 2011). It provides quantitative insight into how thoroughly the software has 
been tested, identifying areas of code that have not been exercised. Code coverage 
can be calculated by dividing the number of code elements (e.g., statements, branches, 
conditions) executed by the tests by the total number of elements in the software 
(Ammann & Offutt, 2016). Higher coverage typically correlates with a lower likelihood 
of undiscovered defects, thereby enhancing software quality and reliability (Zhu, Hall, 
& May, 1997).

The coverage problem in software testing involves selecting test cases that collectively 
execute the largest possible proportion of a software's code elements (branches, 
statements, conditions). Formally, the coverage problem can be expressed as an 
optimization problem.

Let T be the set of potential test cases, C(t) represent the set of code elements covered 
by the test case t, and E be the set of all code elements in the software under test. The 
problem consists of selecting a subset           such as the proportion of covered code 
elements, defined as Eq 1.

where U denotes the union of all unique code elements covered by the selected test 
cases T’.

Related works 

DE has demonstrated effectiveness in generating high-quality test cases due to its 
simplicity, robustness, and capability to handle continuous search spaces.
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Varshney and Mehrotra (2016) proposed a DE-based approach for automated test 
data generation to maximize data-flow coverage. Their study designed a fitness 
function leveraging dominance relations and branch distance metrics to guide 
the search process. Experimental results showed that their DE-based approach 
outperformed Random Search, GA, and PSO regarding average coverage and number 
of generations, particularly for benchmark programs where data-flow coverage is critical 
(Varshney & Mehrotra, 2016). Panda et al. (2020) developed a hybrid metaheuristic 
framework combining the Firefly Algorithm (FA) with DE for test suite generation in 
object-oriented programs. The approach utilized UML behavioral state chart models 
to derive feasible test sequences and then applied the hybrid FA-DE algorithm for 
optimization. Their results demonstrated improved performance over individual FA 
and DE implementations, achieving better exploration, exploitation, and coverage of 
transition paths in model-based testing scenarios (Panda et al., 2020). 

Pietrantuono and Russo (2018) analyzed search-based optimization techniques applied 
to the Testing Resource Allocation Problem (TRAP). Their study provided an overview of 
metaheuristic methods, including DE, employed to optimize resource distribution among 
software components under constraints such as cost and reliability. While not directly 
focused on test case generation, their work highlighted the versatility and applicability of 
search-based methods, including DE, in broader software testing contexts (Pietrantuono 
& Russo, 2018). Nguyen et al. (2016) investigated exploration-focused techniques 
to enhance SBST. They experimentally evaluated strategies designed to maximize 
behavioral diversity during test generation. Their findings emphasized the importance 
of balancing exploration and exploitation in SBST, a challenge where DE’s adaptive 
mechanisms can offer advantages (Nguyen et al., 2016).

Despite these contributions, most prior studies have focused on either hybrid 
metaheuristic frameworks, specific test adequacy criteria such as data-flow coverage, 
or resource allocation problems in testing. Much prior work has also emphasized 
comparisons between DE and population-based evolutionary algorithms like GA or 
swarm-based approaches like PSO and ACO. This study differs from previous works in 
that it conducted an exploratory empirical evaluation focused on differential evolution 
(DE) as a test suite generation technique to maximize code coverage. Unlike prior 
studies emphasizing data flow or path coverage, this work addresses statement and 
branch coverage as primary metrics, which are fundamental and widely adopted in 
white-box testing.

Furthermore, this study compares DE against SA, a single-solution metaheuristic known 
for its conceptual simplicity and low computational complexity regarding operators and 
memory requirements. The choice of SA as a baseline is grounded in two key reasons. 
First, SA was one of the earliest metaheuristic algorithms applied to SBST, and it has 
historically served as a foundational method for automated test generation. Second, 
comparing DE to SA highlights the advantages of population-based strategies over 
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are exercised based on input variables. The problem is formalized as an optimization 
task:

Optimization problem

Minimize:

where:                                                represents a test suite composed of N test cases. C(ti ) 
is the set of code branches covered by test case ti. The objective is to maximize the 
number of unique branches covered by the test suite.

subject to:                                                                                  for i = 1,…,N 

Solution representation

Each candidate solution (individual) represents a test suite. A test suite consists of N= 
5 test cases. Each test case is composed of three input variables: x,y, and z. Therefore, 
each individual is represented as a real-valued vector of dimension D = 15.

more straightforward, trajectory-based methods regarding exploration capabilities and 
solution quality. By contrasting DE with a more basic metaheuristic, this work clarifies 
the trade-offs between algorithmic complexity and performance, particularly regarding 
coverage achieved and the number of fitness function evaluations required.

Proposed approach

This section presents the approach employed to generate test suites using Differential 
Evolution (DE) for maximizing code coverage in the system under test (SUT). 
The methodology consists of four components: the problem definition, solution 
representation, fitness function, and the DE algorithm.

System Under Test (SUT)

The goal of this study is to generate test suites that maximize code coverage in a given 
SUT. The SUT, modeled as a decision logic function, determines which code branches 
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Example representation

Each xi,yi , and zi are constrained within the ranges defined in the problem domain

Fitness function

The fitness function evaluates the quality of a test suite based on the number of unique 
code branches covered when executing the SUT with the test cases in the suite.

Objective function

Maximize:

Differential evolution algorithm

The complete DE algorithm follows the standard DE/rand/1/bin strategy. The 
pseudocode for the implementation is shown in algorithm 1.
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Implementation details

The algorithms and fitness functions were implemented in Python. The implementation 
included:
•	 A fitness function to measure the number of unique branches covered by the test 

suite.
•	 A System Under Test (SUT) modeled as a deterministic decision logic function with 

8 branches.
•	 Custom implementations of DE and SA, utilizing vector operations and stochastic 

components.
•	
The development relied on the following Python libraries:
•	 NumPy for vector and numerical operations.
•	 random for stochastic behaviors and seed control.
•	 Matplotlib for generating sensitivity analysis plots.
•	 time for internal execution measurements.

All experiments were conducted using reproducible random seeds and can be 
reproduced upon request.

Experimental design and results

This section presents the exploratory empirical study conducted to evaluate the 
performance of Differential Evolution (DE) as a technique for automated test suite 
generation aimed at maximizing code coverage. The experimental design is structured 
in two phases: i) Sensitivity Analysis of DE Parameters and ii) Comparative Analysis 
with Simulated Annealing (SA), which focuses on convergence speed and coverage 
effectiveness.

The cause for this experimental design is twofold. First, sensitivity analysis allows 
the identification of appropriate parameter settings for DE in the context of SBST. 
Understanding parameter sensitivity is essential for determining how parameter 
variations influence the algorithm’s performance in this specific problem domain. 
Second, by comparing DE to Simulated Annealing (SA), a simpler single-solution 
metaheuristic and one of the first algorithms applied in SBST, it is possible to assess 
the relative advantages of DE in terms of convergence speed (evaluated by fitness 
function evaluations or FEs) and final coverage achieved.

Sensitivity analysis

The Differential Evolution (DE) algorithm parameters were selected based on systematic 
experimentation. Various configurations were tested by varying the parameters 
individually, and the combination that provided the best trade-off between exploration, 
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exploitation, and convergence speed was chosen. The selected parameters and their 
corresponding justifications are presented in table 1.

The systematic experimentation phase varied each parameter within typical ranges 
suggested in the literature (Storn & Price, 1997). To identify the most effective 
configuration for test suite generation and code coverage maximization, sensitivity 
analyses were conducted for key parameters, as shown in Figures 1 to 3.

Increasing NP improved coverage up to a point, with decreasing returns observed 
beyond NP = 50. A value of NP = 20 was selected to balance diversity and computational 
cost (see Figure 1). Optimal performance was achieved with F=0.2, enabling fine-

Table 1. Parameter settings for DE

Figure 1. Sensitivity analysis of population size (NP)

tuned adjustments without excessive randomness. Lower or higher values resulted 
in suboptimal coverage (see Figure 2).

A high crossover rate (CR=0.9) facilitated exploration, leading to better coverage 
compared to lower rates, while avoiding instability observed at CR=1.0 (see Figure 3).
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Figure 2. Sensitivity analysis of scaling factor (F)

Figure 3. Sensitivity analysis of crossover probability (CR)

Convergence speed analysis

The second experiment assesses the convergence speed of DE in comparison to 
SA, focusing on the number of fitness function evaluations (FEs) required to achieve 
competitive or optimal solutions. FEs are a standard metric for evaluating algorithmic 
efficiency in optimization tasks, as they directly represent the computational cost 
associated with invoking the fitness function during the search process. One FE 
corresponds to a single invocation of the fitness function within the optimization loop. 
This metric is particularly relevant when comparing population-based and single-point 
metaheuristics, as population-based algorithms typically perform NP times more FEs 
per iteration than single-point techniques like SA.

This study executed DE and SA under equivalent stopping criteria, with a maximum 
of 100 iterations and the same evaluation limits. The objective was to analyze the 
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speed at which each algorithm converges toward optimal or near-optimal test suites, 
measured in terms of the number of FEs required.

To ensure the robustness and statistical validity of the results, 30 independent runs 
were performed for each algorithm. Each run was initialized with a distinct random 
seed to account for the algorithms' stochastic nature and reduce potential biases in 
the evaluation.

Table 2 demonstrates apparent differences in the convergence behavior of both 
algorithms. In 30 runs, DE always required fewer fitness function evaluations (FEs) to 
achieve competitive solutions than SA. Specifically, DE exhibited a mean of 664.83 
FEs and a median of 300 FEs, indicating that, in most runs, it was able to converge 
toward optimal or near-optimal solutions well before reaching the maximum iteration 
limit. This is further supported by the minimum of 80 FEs, which reflects DE’s ability to 
rapidly find high-quality solutions in favorable scenarios.

On the other hand, SA required more evaluations, with a mean of 1750.07 FEs and a 
median of 1801, corresponding to its maximum limit. The fact that SA’s mode is also 
1801 suggests that in most runs, the algorithm exhausted its evaluation budget without 
converging early, highlighting its slower convergence rate. The lower standard deviation 
(274.27) in SA FEs indicates more consistent but slower convergence behavior across 
runs.

On the other hand, DE showed more significant variability in the number of evaluations 
(standard deviation of 786.85) due to its adaptive search dynamics. It reflects a range 
of convergence speeds and demonstrates DE’s potential to converge early, reducing 
computational cost when successful. This analysis shows that DE converges faster on 
average and demonstrates more flexibility in balancing exploration and exploitation, 
making it a more efficient option for test suite generation in this experimental context.

Coverage performance comparison

The final experiment evaluates the effectiveness of DE and SA in maximizing code 
coverage. The target problem considered in this study has a theoretical maximum 

Table 2. Descriptive statistics for fitness function evaluations (FEs)

Exploring the effectiveness of differential evolution 



343

Desafíos multidisciplinarios en la construcción de ciudadanía global, social y solidaria: procesos y modelos metodológicos

coverage of 8, which corresponds to the total number of distinct branches defined within 
the System Under Test (SUT). This upper bound was determined through structural 
analysis of the SUT’s decision logic, where 8 unique decision branches were identified. 
Full coverage is achieved when all these branches are exercised by the generated 
test suite.

The descriptive statistics for code coverage obtained from 30 independent runs of 
each algorithm are summarized in Table 3.

The results show that DE significantly outperforms SA in terms of coverage quality. 
DE achieved the optimal coverage in 22 out of 30 runs, representing 73.3% of the 
executions. On the other hand, SA reached the optimal coverage only once across 
all runs. This substantial difference highlights DE’s superior capability to consistently 
generate test suites that exercise all available branches in the SUT.

Moreover, DE exhibits a higher average coverage (7.76) and a median of 8, which 
indicates that most of its runs achieved full coverage or came very close to it. The mode 
of 8 further confirms that full coverage was the most frequently observed outcome 
for DE. Its low standard deviation (0.44) suggests a high level of consistency in its 
performance across runs, with minimal variation in coverage.

Conversely, SA shows a lower mean coverage of 6.07, with a median of 6, implying 
that in at least half of its runs, it failed to cover two or more branches. Although SA 
managed to achieve a maximum coverage of 8 in one instance, its minimum coverage 
dropped to 2, underscoring its inability to consistently generate effective test suites. The 
standard deviation of 1.28 indicates greater variability in SA’s performance, reflecting 
inconsistency in its capacity to explore the search space and maximize coverage.

The coverage analysis demonstrates that DE is more effective in achieving higher 
coverage, and more reliable and consistent across multiple independent runs. These 

Table 3. Descriptive statistics for code coverage

findings reinforce the suitability of DE as a robust approach for maximizing code 
coverage in automated test suite generation.
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Experimental setup

All experiments were executed on the following hardware:
•	 Processor: AMD Ryzen 7 5800H (8 cores, 16 threads)
•	 RAM: 8 GB DDR4
•	 Operating System: Windows 11
•	 Python Version: 3.12.4

Each independent run of DE and SA took approximately 5 to 15 seconds, depending on 
convergence speed. A whole batch of 30 runs per algorithm was completed in under 10 
minutes, demonstrating the efficiency of DE for test suite generation in SBST contexts.

Discussion

The results obtained from the experiments provide clear evidence of DE advantages 
over SA in the context of SBST. The convergence speed analysis demonstrated that DE 
requires significantly fewer fitness function evaluations (FEs) to achieve competitive or 
optimal solutions. This suggests that DE can reduce computational costs by converging 
faster, even in scenarios involving complex search spaces and multiple test case 
parameters.

In addition to convergence speed, DE outperformed SA regarding code coverage. DE 
consistently achieved or approached the theoretical maximum coverage of the SUT, 
with minimal variation across multiple independent runs. This reliability is crucial in 
the automated generation of test suites, where consistency and high coverage are 
essential to ensure effective fault detection and verification of software behavior.

The sensitivity analysis provided valuable insights into the impact of DE control 
parameters on its performance. The results confirmed that parameter tuning is critical 
for balancing exploration and exploitation within the search process. Specifically, the 
selected combination of a low scaling factor (F=0.2) and a high crossover probability 
(CR=0.9) enabled DE to maintain a fine-grained search capability while ensuring 
sufficient diversity in the population.

By contrast, SA showed limited capacity to adapt its search trajectory, frequently 
exhausting its evaluation budget without achieving high coverage. While SA 
convergence behavior was more consistent regarding FEs, its overall effectiveness 
in maximizing code coverage was significantly lower than DE.

In summary, the empirical evidence supports the conclusion that DE is better suited 
than SA for automated test suite generation tasks to maximize code coverage. DE 
population-based search strategy, adaptability, and robustness make it a compelling 
choice for SBST applications.
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Conclusions and future works

This study explored Differential Evolution (DE) as an automated test suite generation 
optimization within Search-Based Software Testing (SBST). The primary objective was 
to maximize code coverage in the System Under Test (SUT), and the experimental 
results provide solid evidence supporting DE's effectiveness in achieving this goal.

The experiments began with a sensitivity analysis to identify the optimal configuration 
of DE parameters. Through systematic experimentation, it was determined that a 
population size of 20, a scaling factor of 0.2, and a crossover probability of 0.9 provided 
a good balance between exploration and exploitation. These settings enabled DE to 
navigate the search space effectively and generate high-quality test suites.

Once configured, DE was compared to Simulated Annealing (SA), a classic single-
solution metaheuristic historically applied in SBST tasks. The comparison focused on 
two critical aspects: convergence speed, measured by the number of fitness function 
evaluations (FEs), and the quality of the solutions, measured by the achieved code 
coverage.

The results demonstrated that DE consistently outperformed SA. Regarding 
convergence speed, DE required significantly fewer FEs to reach competitive or optimal 
solutions. In several cases, DE converged early, reducing the computational cost 
associated with the test suite generation process. On the other hand, SA frequently 
exhausted its evaluation budget without achieving high coverage, reflecting its slower 
convergence rate.

Regarding coverage quality, DE proved to be more effective and reliable. It reached 
the theoretical maximum coverage of the SUT in 73.3% of the runs and consistently 
produced test suites that covered nearly all available branches. In contrast, SA exhibited 
lower coverage on average, higher variability in its results, and a limited ability to explore 
the search space effectively.

Overall, this study's findings confirm that Differential Evolution is a robust and efficient 
approach for automated test suite generation aimed at maximizing code coverage. Its 
adaptability, convergence behavior, and consistent performance make it a suitable 
candidate for addressing optimization problems in SBST.

Future work will extend this approach to other coverage criteria, integrate DE with 
hybrid metaheuristics, explore dynamic parameter adaptation techniques, and conduct 
experiments on larger and more complex systems. Additionally, incorporating fault 
detection metrics as optimization objectives will be considered to enhance the evaluation 
of the generated test suites' effectiveness.
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