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Exploring the effectiveness of differential evolution for
maximizing coverage in automatic testing

Explorando la efectividad de la evolucion diferencial para maximizar la cobertura
en pruebas automaticas

Saul Dominguez-Isidro’

Resumen: Las pruebas de software basadas en busqueda (SBST) pretenden optimizar
la generacion de casos de prueba mediante metaheuristicas, maximizando métricas de
calidad como la cobertura de codigo. Este estudio examina la eficacia de la evolucién
diferencial (ED) en la generacion automatica de conjuntos de pruebas que maximizan
la cobertura. Se disefié un estudio empirico exploratorio, utilizando funciones basadas
en Python para evaluar el rendimiento de la ED. Los resultados obtenidos destacan
el potencial de la ED en comparacion con el recocido simulado (SA), demostrando
mejoras tanto en la cobertura alcanzada como en el numero de evaluaciones de
funciones objetivo necesarias.

Palabras clave: pruebas de software basadas en busqueda, evolucion diferencial,
cobertura

Abstract: Search-Based Software Testing (SBST) aims to optimize test case generation
through metaheuristics, maximizing quality metrics such as code coverage. This study
examines the effectiveness of Differential Evolution (DE) in generating test suites
that maximize coverage automatically. An exploratory empirical study was designed,
utilizing Python-based functions to evaluate the performance of DE. The obtained
results highlight DE’s potential compared to Simulated Annealing (SA), demonstrating
improvements in both achieved coverage and the number of objective function
evaluations required.
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« PSO: Particle swarm optimization

* ACO:Ant colony optimization

* FEs: Fitness function evaluations

* NP: Population size (DE parameter)
* CR: Crossover probability

* F:Scalingfactor
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Introduction

Software testing plays a fundamental role in software development, aiming to detect
faults, evaluate performance, and assure the reliability and quality of the final product.
During this phase of the development cycle, emphasis is placed on formulating test
case suites to verify software compliance with predefined requirements and correct
functionality across various scenarios. Despite its crucial role, software testing typically
requires significant time and resources, posing challenges particularly in extensive
projects or complex systems, where managing the balance between constraints,
essential requirements, and the inherent imprecision of these requirements is vital
(Harman, Mansouri, & Zhang, 2001).

Overtime, test design has evolved significantly, driven by emerging tools and techniques
that have radically transformed the testing landscape. Prominent among these are
automation and optimization methods. Tools such as Selenium (2023), widely used
for test design and management, and optimization approaches employed in Search-
Based Software Engineering (SBSE) have become essential (Harman & Jones, 2001).
SBSE does not necessarily seek definitive solutions butinstead employs metaheuristic
algorithms to generate optimal or near-optimal test suites, effectively automating and
optimizing test processes (Harman, Jia, & Zhang, 2015).

Metaheuristics employed within SBST can be categorized as traditional single-point
methods, such as Simulated Annealing (SA), population-based evolutionary algorithms,
such as Genetic Algorithms (GA) and Differential Evolution (DE), and population-based
swarm intelligence algorithms (Kennedy and Eberhart, 2001), such as Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO). These techniques explore the
solution space efficiently, optimizing objectives like code coverage, test case reduction,
and fault detection (Hernandez-Suarez, 2024 ). DE (Storn and Price, 1997) has gained
significant attention due to its straightforward structure, robustness, and efficacy in
handling continuous optimization problems. These characteristics make DE suitable for
automatically generating test suites that maximize code coverage. In order to evaluate
DE’s potential, specifically in test suite generation, an exploratory empirical study was
designed using Python-based functions. Results indicate DE’s superior performance

Desafios multidisciplinarios en la construccion de ciudadania global, social y solidaria: procesos y modelos metodolégicos

334



Exploring the effectiveness of differential evolution

compared to SA, reinforcing its capability to enhance code coverage significantly and
thus emphasizing its suitability for SBST.

The structure of this document s as follows: Section 2 describes the problem statement;
Section 3 presents related works; Section 4 explains the proposed approach; Section
5 presents the experimental design and results, while Section 6, the discussion; finally,
conclusions and future work are outlined in Section 7.

Problem statement

Code coverage is a metric used in software testing to measure the extent to which
the source code of a program is executed when a test suite runs (Myers, Sandler, &
Badgett, 2011). It provides quantitative insight into how thoroughly the software has
been tested, identifying areas of code that have not been exercised. Code coverage
can be calculated by dividing the number of code elements (e.g., statements, branches,
conditions) executed by the tests by the total number of elements in the software
(Ammann & Offutt, 2016). Higher coverage typically correlates with a lower likelihood
of undiscovered defects, thereby enhancing software quality and reliability (Zhu, Hall,
& May, 1997).

The coverage problem in software testing involves selecting test cases that collectively
execute the largest possible proportion of a software's code elements (branches,
statements, conditions). Formally, the coverage problem can be expressed as an
optimization problem.

Let T be the set of potential test cases, C(t) represent the set of code elements covered

by the test case t, and E be the set of all code elements in the software under test. The
problem consists of selecting a subset r<r such as the proportion of covered code
elements, definedas Eq 1.

maximize:

1
ter’ C(t)| A
|E]|

|u
where U denotes the union of all unique code elements covered by the selected test
cases T.
Related works

DE has demonstrated effectiveness in generating high-quality test cases due to its
simplicity, robustness, and capability to handle continuous search spaces.
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Varshney and Mehrotra (2016) proposed a DE-based approach for automated test
data generation to maximize data-flow coverage. Their study designed a fitness
function leveraging dominance relations and branch distance metrics to guide
the search process. Experimental results showed that their DE-based approach
outperformed Random Search, GA, and PSO regarding average coverage and number
of generations, particularly for benchmark programs where data-flow coverage is critical
(Varshney & Mehrotra, 2016). Panda et al. (2020) developed a hybrid metaheuristic
framework combining the Firefly Algorithm (FA) with DE for test suite generation in
object-oriented programs. The approach utilized UML behavioral state chart models
to derive feasible test sequences and then applied the hybrid FA-DE algorithm for
optimization. Their results demonstrated improved performance over individual FA
and DE implementations, achieving better exploration, exploitation, and coverage of
transition paths in model-based testing scenarios (Panda et al., 2020).

Pietrantuono and Russo (2018) analyzed search-based optimization techniques applied
to the Testing Resource Allocation Problem (TRAP). Their study provided an overview of
metaheuristic methods, including DE, employed to optimize resource distribution among
software components under constraints such as cost and reliability. While not directly
focused on test case generation, their work highlighted the versatility and applicability of
search-based methods, including DE, in broader software testing contexts (Pietrantuono
& Russo, 2018). Nguyen et al. (2016) investigated exploration-focused techniques
to enhance SBST. They experimentally evaluated strategies designed to maximize
behavioral diversity during test generation. Their findings emphasized the importance
of balancing exploration and exploitation in SBST, a challenge where DE’s adaptive
mechanisms can offer advantages (Nguyen etal., 2016).

Despite these contributions, most prior studies have focused on either hybrid
metaheuristic frameworks, specific test adequacy criteria such as data-flow coverage,
or resource allocation problems in testing. Much prior work has also emphasized
comparisons between DE and population-based evolutionary algorithms like GA or
swarm-based approaches like PSO and ACO. This study differs from previous works in
that it conducted an exploratory empirical evaluation focused on differential evolution
(DE) as a test suite generation technique to maximize code coverage. Unlike prior
studies emphasizing data flow or path coverage, this work addresses statement and
branch coverage as primary metrics, which are fundamental and widely adopted in
white-box testing.

Furthermore, this study compares DE against SA, a single-solution metaheuristic known
forits conceptual simplicity and low computational complexity regarding operators and
memory requirements. The choice of SAas abaseline is grounded in two key reasons.
First, SAwas one of the earliest metaheuristic algorithms applied to SBST, and it has
historically served as a foundational method for automated test generation. Second,
comparing DE to SA highlights the advantages of population-based strategies over
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more straightforward, trajectory-based methods regarding exploration capabilities and
solution quality. By contrasting DE with a more basic metaheuristic, this work clarifies
the trade-offs between algorithmic complexity and performance, particularly regarding
coverage achieved and the number of fitness function evaluations required.

Proposed approach

This section presents the approach employed to generate test suites using Differential
Evolution (DE) for maximizing code coverage in the system under test (SUT).
The methodology consists of four components: the problem definition, solution
representation, fitness function, and the DE algorithm.

System Under Test (SUT)

The goal of this study is to generate test suites that maximize code coverage in a given
SUT. The SUT, modeled as a decision logic function, determines which code branches
are exercised based on input variables. The problem is formalized as an optimization
task:

BranchA ifx>10Ay<5Az=0

BranchB ifx>10Ay<5Az#0 (2)
decision_logic(x ,y, z) = { Branch C if x>10Ay =5

BranchD ifx>10Ay > 20

BranchE ifx>10Ay <5

Optimization problem
Minimize:

(3)

N
U C(t)
i=1

where: X = [ty t, ..., ty] represents a test suite composed of N test cases. C(t)
is the set of code branches covered by test case t. The objective is to maximize the
number of unique branches covered by the test suite.

fG) =-

subjectto: x; € [0,30]; y; € [0,30]; z; € [0,5] fori=1,...,N
Solution representation
Each candidate solution (individual) represents a test suite. Atest suite consists of N=

5test cases. Each test case is composed of three input variables: x,y, and z. Therefore,
eachindividual is represented as a real-valued vector of dimension D = 15.
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Example representation
Individual X = [Xy, Y1, 21, X2, V2, Z2, e ) X5, Vs, Z5]
Each x,y,, and z are constrained within the ranges defined in the problem domain
x; € [0,30]; y; € [0,30]; z; € [0,5]
Fitness function

The fitness function evaluates the quality of a test suite based on the number of unique
code branches covered when executing the SUT with the test cases in the suite.

Objective function

Maximize:
(3)

COUET’QQ‘E(?) =

N
| Jee
i=1

Differential evolution algorithm

The complete DE algorithm follows the standard DE/rand/1/bin strategy. The
pseudocode for the implementation is shown in algorithm 1.

Algorithm 1: Differential evolution (DE/rand/1/bin)

1. Randomly generate an initial population of NP vectors Py = {X; 4, ..., Xonp}
2. Evaluate the fitness of each individual in the initial population.
3. Repeat until the stop condition is met (maximum iterations or full coverage):
e Foreach individuali = 1,...,NP:
i. Randomly select r1,72,r4 € {1,..., NP} with r1 #r2 #r4 *#
i
ii. Generate a mutant vectorV; = Xy + F(X;n — X,3)
ii. Apply binomial crossover to produce a trial vector U;
For each dimensionj = 1,...,D:

Vij ifrand; < CRoOY | = jrqna

Ui'j = {X otherwise

L.f
iv. Evaluate U;
v. Apply selection
¥, = {Ul- if coverage(U;) = coverage(U;)
' X; otherwise
¢ Update the best-so-far solution and coverage.
4. Terminate when the maximum number of iterations is reached or when full

coverage is obtained.
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Implementation details

The algorithms and fitness functions were implemented in Python. The implementation

included:

+ Afitness function to measure the number of unique branches covered by the test
suite.

* ASystem Under Test (SUT) modeled as a deterministic decision logic function with
8 branches.

« Customimplementations of DE and SA, utilizing vector operations and stochastic
components.

The development relied on the following Python libraries:

* NumPy for vector and numerical operations.

« random for stochastic behaviors and seed control.

« Matplotlib for generating sensitivity analysis plots.

+ time forinternal execution measurements.

All experiments were conducted using reproducible random seeds and can be
reproduced upon request.

Experimental design and results

This section presents the exploratory empirical study conducted to evaluate the
performance of Differential Evolution (DE) as a technique for automated test suite
generation aimed at maximizing code coverage. The experimental design is structured
in two phases: i) Sensitivity Analysis of DE Parameters and ii) Comparative Analysis
with Simulated Annealing (SA), which focuses on convergence speed and coverage
effectiveness.

The cause for this experimental design is twofold. First, sensitivity analysis allows
the identification of appropriate parameter settings for DE in the context of SBST.
Understanding parameter sensitivity is essential for determining how parameter
variations influence the algorithm’s performance in this specific problem domain.
Second, by comparing DE to Simulated Annealing (SA), a simpler single-solution
metaheuristic and one of the first algorithms applied in SBST, it is possible to assess
the relative advantages of DE in terms of convergence speed (evaluated by fitness
function evaluations or FEs) and final coverage achieved.

Sensitivity analysis
The Differential Evolution (DE) algorithm parameters were selected based on systematic

experimentation. Various configurations were tested by varying the parameters
individually, and the combination that provided the best trade-off between exploration,
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exploitation, and convergence speed was chosen. The selected parameters and their
corresponding justifications are presented in table 1.

Table 1. Parameter settings for DE

Parameter Value Justification / impact
Population Size (NP) 20 A moderate population size balances exploration and
computational cost. Larger populations improve diversity but
increase evaluations.

Scaling Factor (F) 0.2 A low scaling factor limits the magnitude of mutation steps,
promoting fine-tuned search and avoiding disruptive changes.

Crossover Probability (CR) 0.9 A high crossover probability encourages diversity by incorporating
components from mutant vectors more frequently.

Maximum lterations 100 Provides sufficient opportunity for convergence while maintaining
reasonable computational time.

Dimensionality (D) 15 Corresponds to 5 test cases x 3 input variables. This defines the

search space dimensionality for the test suite generation.

The systematic experimentation phase varied each parameter within typical ranges
suggested in the literature (Storn & Price, 1997). To identify the most effective
configuration for test suite generation and code coverage maximization, sensitivity
analyses were conducted for key parameters, as shown in Figures 1 to 3.

Figure 1. Sensitivity analysis of population size (NP)

9.0
8.5
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7.0F
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6.0

20 40 60 80 100
Population Size (NP)

Increasing NP improved coverage up to a point, with decreasing returns observed
beyond NP =50. Avalue of NP = 20 was selected to balance diversity and computational
cost (see Figure 1). Optimal performance was achieved with F=0.2, enabling fine-
tuned adjustments without excessive randomness. Lower or higher values resulted
in suboptimal coverage (see Figure 2).

A high crossover rate (CR=0.9) facilitated exploration, leading to better coverage
compared to lower rates, while avoiding instability observed at CR=1.0 (see Figure 3).
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Figure 2. Sensitivity analysis of scaling factor (F)
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Figure 3. Sensitivity analysis of crossover probability (CR)
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Convergence speed analysis

The second experiment assesses the convergence speed of DE in comparison to
SA, focusing on the number of fitness function evaluations (FEs) required to achieve
competitive or optimal solutions. FEs are a standard metric for evaluating algorithmic
efficiency in optimization tasks, as they directly represent the computational cost
associated with invoking the fitness function during the search process. One FE
corresponds to a single invocation of the fitness function within the optimization loop.
This metricis particularly relevant when comparing population-based and single-point
metaheuristics, as population-based algorithms typically perform NP times more FEs
per iteration than single-point techniques like SA.

This study executed DE and SA under equivalent stopping criteria, with a maximum
of 100 iterations and the same evaluation limits. The objective was to analyze the
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speed at which each algorithm converges toward optimal or near-optimal test suites,
measured in terms of the number of FEs required.

To ensure the robustness and statistical validity of the results, 30 independent runs
were performed for each algorithm. Each run was initialized with a distinct random
seed to account for the algorithms' stochastic nature and reduce potential biases in
the evaluation.

Table 2. Descriptive statistics for fitness function evaluations (FEs)

Criteria DE SA
Maximum 2020 1801
Minimum 80 324
Mean 664.83 1750.07
Median 300 1801
Mode 2020 1801
Standard Deviation 786.85 274.27

Table 2 demonstrates apparent differences in the convergence behavior of both
algorithms. In 30 runs, DE always required fewer fitness function evaluations (FEs) to
achieve competitive solutions than SA. Specifically, DE exhibited a mean of 664.83
FEs and a median of 300 FEs, indicating that, in most runs, it was able to converge
toward optimal or near-optimal solutions well before reaching the maximum iteration
limit. This is further supported by the minimum of 80 FEs, which reflects DE’s ability to
rapidly find high-quality solutions in favorable scenarios.

On the other hand, SArequired more evaluations, with a mean of 1750.07 FEs and a
median of 1801, corresponding to its maximum limit. The fact that SA’'s mode is also
1801 suggests thatin most runs, the algorithm exhausted its evaluation budget without
converging early, highlighting its slower convergence rate. The lower standard deviation
(274.27)in SAFEs indicates more consistent but slower convergence behavior across
runs.

On the other hand, DE showed more significant variability in the number of evaluations
(standard deviation of 786.85) due to its adaptive search dynamics. It reflects arange
of convergence speeds and demonstrates DE’s potential to converge early, reducing
computational cost when successful. This analysis shows that DE converges fasteron
average and demonstrates more flexibility in balancing exploration and exploitation,
making it a more efficient option for test suite generation in this experimental context.

Coverage performance comparison

The final experiment evaluates the effectiveness of DE and SA in maximizing code
coverage. The target problem considered in this study has a theoretical maximum
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coverage of 8, which corresponds to the total number of distinct branches defined within
the System Under Test (SUT). This upper bound was determined through structural
analysis of the SUT’s decision logic, where 8 unique decision branches were identified.
Full coverage is achieved when all these branches are exercised by the generated
test suite.

The descriptive statistics for code coverage obtained from 30 independent runs of
each algorithm are summarized in Table 3.

Table 3. Descriptive statistics for code coverage

Criteria DE SA
Maximum 8 8
Minimum 7 2

Mean 7.76 6.07
Median 8 6

Mode 8 7
Standard Deviation 0.44 1.28
Optimal Coverage Achieved (8) 22 /30 runs 1 /30 runs

The results show that DE significantly outperforms SA in terms of coverage quality.
DE achieved the optimal coverage in 22 out of 30 runs, representing 73.3% of the
executions. On the other hand, SA reached the optimal coverage only once across
all runs. This substantial difference highlights DE’s superior capability to consistently
generate test suites that exercise all available branches in the SUT.

Moreover, DE exhibits a higher average coverage (7.76) and a median of 8, which
indicates that most of its runs achieved full coverage or came very close to it. The mode
of 8 further confirms that full coverage was the most frequently observed outcome
for DE. Its low standard deviation (0.44) suggests a high level of consistency in its
performance across runs, with minimal variation in coverage.

Conversely, SA shows a lower mean coverage of 6.07, with a median of 6, implying
that in at least half of its runs, it failed to cover two or more branches. Although SA
managed to achieve a maximum coverage of 8 in one instance, its minimum coverage
dropped to 2, underscoring its inability to consistently generate effective test suites. The
standard deviation of 1.28 indicates greater variability in SA’'s performance, reflecting
inconsistency in its capacity to explore the search space and maximize coverage.

The coverage analysis demonstrates that DE is more effective in achieving higher
coverage, and more reliable and consistent across multiple independentruns. These
findings reinforce the suitability of DE as a robust approach for maximizing code
coverage in automated test suite generation.
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Experimental setup

All experiments were executed on the following hardware:
* Processor: AMD Ryzen 7 5800H (8 cores, 16 threads)
+ RAM:8 GBDDR4

* Operating System: Windows 11

* Python Version: 3.12.4

Each independent run of DE and SAtook approximately 5to 15 seconds, depending on
convergence speed. Awhole batch of 30 runs per algorithm was completed in under 10
minutes, demonstrating the efficiency of DE for test suite generationin SBST contexts.

Discussion

The results obtained from the experiments provide clear evidence of DE advantages
over SAinthe context of SBST. The convergence speed analysis demonstrated that DE
requires significantly fewer fitness function evaluations (FEs) to achieve competitive or
optimal solutions. This suggests that DE can reduce computational costs by converging
faster, even in scenarios involving complex search spaces and multiple test case
parameters.

In addition to convergence speed, DE outperformed SAregarding code coverage. DE
consistently achieved or approached the theoretical maximum coverage of the SUT,
with minimal variation across multiple independent runs. This reliability is crucial in
the automated generation of test suites, where consistency and high coverage are
essential to ensure effective fault detection and verification of software behavior.

The sensitivity analysis provided valuable insights into the impact of DE control
parameters on its performance. The results confirmed that parameter tuning is critical
for balancing exploration and exploitation within the search process. Specifically, the
selected combination of a low scaling factor (F=0.2) and a high crossover probability
(CR=0.9) enabled DE to maintain a fine-grained search capability while ensuring
sufficient diversity in the population.

By contrast, SA showed limited capacity to adapt its search trajectory, frequently
exhausting its evaluation budget without achieving high coverage. While SA
convergence behavior was more consistent regarding FEs, its overall effectiveness
in maximizing code coverage was significantly lower than DE.

In summary, the empirical evidence supports the conclusion that DE is better suited
than SA for automated test suite generation tasks to maximize code coverage. DE
population-based search strategy, adaptability, and robustness make it a compelling
choice for SBST applications.
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Conclusions and future works

This study explored Differential Evolution (DE) as an automated test suite generation
optimization within Search-Based Software Testing (SBST). The primary objective was
to maximize code coverage in the System Under Test (SUT), and the experimental
results provide solid evidence supporting DE's effectiveness in achieving this goal.

The experiments began with a sensitivity analysis to identify the optimal configuration
of DE parameters. Through systematic experimentation, it was determined that a
population size of 20, a scaling factor of 0.2, and a crossover probability of 0.9 provided
a good balance between exploration and exploitation. These settings enabled DE to
navigate the search space effectively and generate high-quality test suites.

Once configured, DE was compared to Simulated Annealing (SA), a classic single-
solution metaheuristic historically applied in SBST tasks. The comparison focused on
two critical aspects: convergence speed, measured by the number of fitness function
evaluations (FEs), and the quality of the solutions, measured by the achieved code
coverage.

The results demonstrated that DE consistently outperformed SA. Regarding
convergence speed, DE required significantly fewer FEs to reach competitive or optimal
solutions. In several cases, DE converged early, reducing the computational cost
associated with the test suite generation process. On the other hand, SA frequently
exhausted its evaluation budget without achieving high coverage, reflecting its slower
convergence rate.

Regarding coverage quality, DE proved to be more effective and reliable. It reached
the theoretical maximum coverage of the SUT in 73.3% of the runs and consistently
produced test suites that covered nearly all available branches. In contrast, SA exhibited
lower coverage on average, higher variability in its results, and a limited ability to explore
the search space effectively.

Overall, this study's findings confirm that Differential Evolution is a robust and efficient
approach for automated test suite generation aimed at maximizing code coverage. Its
adaptability, convergence behavior, and consistent performance make it a suitable
candidate for addressing optimization problems in SBST.

Future work will extend this approach to other coverage criteria, integrate DE with
hybrid metaheuristics, explore dynamic parameter adaptation techniques, and conduct
experiments on larger and more complex systems. Additionally, incorporating fault
detection metrics as optimization objectives will be considered to enhance the evaluation
of the generated test suites' effectiveness.
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