
251

Desafíos multidisciplinarios en la construcción de ciudadanía global, social y solidaria: procesos y modelos metodológicos

Seguimiento inteligente: modelando movimiento de objetos en 
cámaras de video

Smart tracking: modeling object motion in video cameras

Ángel J. Sánchez-García1

1 Doctor en Inteligencia Artificial. Universidad Veracruzana. angesanchez@uv.mx 

Resumen: El seguimiento y modelado de objetos en movimiento es una tarea 
fundamental dentro del campo de la visión artificial, con aplicaciones en videovigilancia, 
vehículos autónomos, monitoreo de tráfico y más. Este texto presenta una metodología 
integral que incluye segmentación, análisis de flujo óptico y modelado mediante el 
filtro de Kalman. Se inicia con la segmentación de objetos en una escena, utilizando 
características como color, forma o textura. Posteriormente, se aplica el flujo óptico para 
detectar movimiento entre frames consecutivos, superando desafíos como el problema 
de la apertura mediante la detección de esquinas. Los vectores de movimiento se 
agrupan para formar regiones, y se define una cubierta convexa para representar cada 
objeto. Finalmente, el filtro de Kalman permite estimar posiciones futuras con base 
en mediciones anteriores, mejorando la precisión del seguimiento. Esta metodología 
permite adaptar el seguimiento a distintos entornos, anticipar comportamientos y 
facilitar la toma de decisiones automáticas en tiempo real.

Palabras clave: visión por computadora, seguimiento, movimiento, flujo óptico, filtro 
de Kalman

Abstract: Tracking and modeling moving objects is a fundamental task within the 
field of computer vision, with applications in video surveillance, autonomous vehicles, 
traffic monitoring, and more. This chapter presents a comprehensive methodology that 
includes segmentation, optical flow analysis, and Kalman filter modeling. It begins with 
the segmentation of objects in a scene, using features such as color, shape, or texture. 
Optical flow is then applied to detect motion between consecutive frames, overcoming 
challenges such as the aperture problem through corner detection. Motion vectors 
are grouped to form regions, and a convex hull is defined to represent each object. 
Finally, the Kalman filter allows future positions to be estimated based on previous 
measurements, improving tracking accuracy. This methodology makes it possible to 
adapt tracking to different environments, anticipate behaviors, and facilitate automatic 
decision-making in real time.
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Introducción

En la actualidad, no se puede concebir el mundo sin tecnología, pues esta se encuentra 
ya en todas partes. Las nuevas generaciones crecen con dispositivos inteligentes que 
permiten gestionar la vida cotidiana; desde recomendaciones para ver una película, 
asistentes inteligentes para escuchar música y chat bots que responden a muchas de 
las preguntas que se tienen. Avances tecnológicos se han dado gracias al desarrollo 
y crecimiento del área llamada inteligencia artificial, la cual proporciona muchos 
elementos para tomar decisiones de manera automática.

En las últimas décadas, el campo de la visión artificial ha experimentado una evolución 
importante, permitiendo a las computadoras percibir, interpretar y comprender la 
información visual de maneras que antes se consideraban ciencia ficción. Dentro 
de las actividades más relevantes en este campo se encuentran el seguimiento y 
modelado de objetos en movimiento en video. Este tema se encuentra en la intersección 
de varias disciplinas, como la visión artificial, el procesamiento de imágenes, el 
aprendizaje automático y la robótica, y desempeña un papel vital en una amplia 
gama de aplicaciones del mundo real, como la vigilancia, la conducción de vehículos 
autónomos, la monitorización del tráfico y la realidad aumentada. 

En los sistemas de videovigilancia, esta capacidad es fundamental para monitorear 
espacios públicos, detectar comportamientos anómalos (Liu et al., 2018) (Parthasarathy 
et al, 2019) y garantizar la seguridad en tiempo real (Sigh et al., 2018)(Garje et al., 
2018) (Sarcar & Yousuf, 2019). Este comportamiento anómalo dependerá de cada 
ambiente y sus características. Por ejemplo, el detectar movimiento de objetos muy 
rápido en alguna plaza o banco genera un movimiento anómalo que puede percibirse 
como alguna alarma de robo, mientras que en hospitales pudieran interpretarse los 
movimientos rápidos como alguna caída de algún infante o de algún adulto mayor. 
Finalmente, si se está monitoreando los objetos que pasan a través de una carretera, 
es posible identificar aquellos que se mueven más rápido y, por lo tanto, notificar algún 
peligro de un potencial accidente vehicular. Como podría intuirse, la velocidad que 
puede ser tolerable en cada uno de estos tres escenarios es diferent; sin embargo, la 
tarea es la misma: identificar objetos que se mueven de manera sospechosa.

El presente capítulo busca dar un panorama general de la metodología para realizar 
el proceso de modelado y seguimiento de objetos en movimiento; con el fin de poder 
aplicarlo a diferentes ambientes, dados los parámetros y circunstancias de cada 
escena en particular.

Metodología

Para realizar este seguimiento de objetos en movimiento es necesario abordar dos 
conceptos principales: segmentación y modelado. Estas tareas son indispensables 
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para tener estimaciones precisas del movimiento de uno o más objetos en una escena. 
La figura 1 muestra el panorama del proceso dividido en 3 módulos principales: módulo 
de segmentación, módulo de modelado, y módulo de predicción.

Módulo de segmentación

Un paso esencial en el análisis de objetos basados en contenido es realizar una 
separación espacial de un objeto, del contexto de la imagen actividad cuyo proceso 
se denomina segmentación. Si bien es cierto que la identificación de los límites que 
delimitan un objeto es sencillo de identificar para el ojo humano, hacerlo de manera 
automática es una tarea no trivial (Garcia ret al., 2008). En el módulo de segmentación 
se recibe un conjunto de imágenes (frames) de una fuente de video que servirá 
principalmente para identificar los objetos de interés del ambiente. Existen tres formas 
tradicionales para segmentar e identificar objetos en una sola imagen, a partir del color 
de la forma o de la textura.

Hay casos en los que se requiere conocer la ubicación de objetos de un color específico, 
de modo que los píxeles vecinos que comparten un color similar se agrupen (Littmann 
& Tirret, 1997)(Fuh et al., 2000)(Wu et al., 2000)(Fleye, 2004). Los objetos también 
pueden identificarse en una imagen con una forma predefinida; por ejemplo, es 
posible encontrar los píxeles que forman un círculo mediante la transformación de 
Hough (Ballard, 1981)(Leavers, 1993). Finalmente, las regiones suelen identificarse 
si comparten la misma textura o una similar, mediante diversos métodos, como 
transformaciones wavelet (Lu et al., 1997), filtros multicanal (Farrokhnia & Jain, 1991) 
y recientemente filtros de Gabor (Wang et al., 2008)(Bitam & Ameur, 2013). 

Sin embargo, si se requiere identificar objetos en movimiento, es necesario contar con, 
al menos, dos imágenes. Esto se debe a que se necesita saber si hubo algún cambio 

Figura 1 Método para el seguimiento de objetos en movimiento
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en la intensidad de los píxeles entre las dos imágenes, lo que permite identificar un 
movimiento. 

Flujo óptico

Para identificar objetos que se mueven de una escena a otra, se suele utilizar el flujo 
óptico. Horn y Schunck (1981) definen el flujo óptico como la relación de los cambios 
espaciotemporales en la intensidad de los píxeles entre dos imágenes; es decir, para 
encontrar la ubicación de los píxeles cuya intensidad cambió de una imagen a otra. 
Para calcular el flujo óptico, los métodos habituales pueden clasificarse en métodos 
densos, como el método de Horn y Shunk (1981), y dispersos, como el método de 
Lucas-Kanade (1981). Este último se basa únicamente en la información local de cada 
píxel, derivada de una pequeña ventana del píxel de interés; a diferencia del método 
de Horn y Shunk, que se basa en la información global de la imagen. A veces puede 
ser necesario no solo identificar objetos en movimiento, sino que, una vez identificado 
el objeto, puede ser importante comprender cómo este se mueve; es decir, se pueden 
obtener la dirección y la magnitud del movimiento.

Puntos de interés

El flujo óptico no se puede identificar en todos los píxeles de la imagen, ya que algunos 
no proporcionan información para su ubicación en la imagen siguiente (tiempo t+1). El 
flujo óptico normal resulta del problema de apertura, que surge cuando se tiene una 
abertura o ventana pequeña para medir el movimiento. Cuando se detecta movimiento 
con una abertura pequeña, a menudo solo se ve un borde, no una esquina. Sin embargo, 
un borde por sí solo no es suficiente para determinar con exactitud cómo (es decir, en 
qué dirección) se mueve todo el objeto (Bradski, 2008) como se observa en la figura 
2, donde se muestra el problema que la apertura genera a través de una ventana de 

Figura 2 Problema de la apertura. Fuente: (Bradski, 2008)

apertura (fila superior): se ve un borde que se mueve hacia la derecha, pero no es 
posible detectar la parte descendente del movimiento (fila inferior).
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Para evitar este problema, deben encontrar píxeles que sean muy diferentes de sus 
vecinos. Harris & Stephens (1988) los denominan esquinas. Las esquinas presentan 
cambios significativos de intensidad en direcciones ortogonales como característicos. 
Es posible utilizar las derivadas de segundo orden de las imágenes, tomadas en todos 
los puntos de la imagen; por ejemplo, la matriz Hessiana alrededor de un punto (p), 
que se define en dos dimensiones por las intensidades de la imagen.

Shi y Tomassi en (1994) definen los puntos como “Características útiles para el 
seguimiento” basándose en la definición de la matriz de Harris y tomando como criterio 
para determinar si son vértices el cálculo de los autovalores de dicha matriz. Dado que 
la matriz de autocorrelación es cuadrada y de orden 2, se obtienen dos eigenvalores. 
Al calcular los eigenvalores λ1 y λ2, se obtiene uno de tres casos posibles.
	 Si λ1 ≈ 0 y λ2 ≈ 0, el píxel no contiene información relevante.
	 Si λ1 ≈ 0 y λ2 tiene un valor positivo grande, se trata de una arista.
	 Si λ1 y λ2 son valores positivos grandes, el píxel es una esquina.

Si el valor propio mínimo supera un umbral α, la esquina tiene un valor fiable para su 
identificación.

Agrupación de vectores

El seguimiento de objetos implica la identificación y localización consistente de objetos 
en frames consecutivos de una secuencia de video. El objetivo es mantener la identidad 

Ecuación 1. Cálculo de la matriz Hessiana para cada pixel

de cada objeto a pesar de posibles cambios de apariencia, oclusiones o variaciones 
de movimiento. 

Por esta razón, tras obtener los vectores de flujo óptico, se pueden agrupar por similitud. 
Para crear cada región que define cada objeto, es necesario agrupar los vectores de 
flujo óptico según tres criterios de un vector: proximidad, dirección y magnitud.

1.	 	P(x1, y1) y Q(x2, y2) son los puntos donde comienzan los vectores A y B 
respectivamente (puntos de interés). A y B se consideran vectores cercanos si los 
puntos P y Q no difieren tanto en x y y de un umbral β, es decir:
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abs(x2 − x1) < β 
abs(y2 − y1) < β
2.	 A y B se consideran vectores con dirección similar si el ángulo entre ambos vectores 

no excede un umbral γ:
< (A,B) < γ
3.	 A y B se consideran vectores similares en términos de su magnitud, si la diferencia 

entre sus magnitudes no difiere de un umbral δ, es decir:
abs(||A||, ||B||) < δ

Segmentación de objetos en movimiento

Para cada grupo de vectores, se obtiene su cubierta convexa para abordar el problema 
de la discontinuidad de las regiones de flujo óptico y segmentar la región (Sánchez et 
al., 2014). Los puntos utilizados para generar la envoltura convexa de cada región son 
los puntos de partida de los vectores pertenecientes a la región. Es posible representar 
la condición para determinar si dos puntos pertenecen a la envoltura convexa del 
conjunto de puntos S. Dos puntos P(x1, x2) y Q(y1, y2) pertenecen al conjunto de la 
envoltura covexa C si y solo si todos los puntos R(x3, y3) pertenecientes a S (excepto 
P y Q), al evaluarse en la ecuación de la recta que pasa por los puntos P y Q, están 
a un lado de la recta (el signo debe tener un único valor para cada punto R, ya sea 
positivo o negativo). 

Finalmente, después de crear una cubierta convexa en cada frame es necesario 
encontrar un punto representativo de cada cubierta debido a que las formas pueden 
cambiar a través del tiempo. A decisión del diseñador puede optarse por obtener el 
promedio o la mediana de cada convexa como punto representativo a seguir en cada 
uno de los frames.

Módulo de modelado

Por otro lado, el modelado añade un nivel de abstracción al representar el movimiento, 
el comportamiento y la estructura de los objetos mediante modelos matemáticos o 
basados en datos. Juntos, el seguimiento y el modelado proporcionan a las máquinas 
una comprensión más profunda de su contexto visual, lo que les permite no solo 
detectar movimiento, sino también anticipar posiciones futuras, interpretar intenciones 
e interactuar adecuadamente con entornos dinámicos.

Este módulo recibe como entrada todos los puntos obtenidos en el módulo de 
segmentación para generar un modelo que permita pronosticar el siguiente punto o 
ubicación para que pueda seguirse a través del tiempo. De hecho los vectores de flujo 
óptico son muy útiles porque evalúan hacia dónde se ha movido el objeto a través del 
tiempo y a dónde debería continuar moviéndose si es que este no cambia de dirección 
de manera brusca. 
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Filtro de Kalman

El filtro de Kalman es un conjunto de ecuaciones matemáticas, descrito por primera 
vez en 1960, donde se presenta una solución recursiva al problema del filtrado lineal de 
datos discretos. Este método ha sido ampliamente investigado y aplicado en diversos 
campos, ya que proporciona un mecanismo computacional (recursivo) eficiente para 
estimar el estado de un proceso. El filtro es potente porque implica estimaciones 
de estados pasados, presentes e incluso futuros. El filtro de Kalman integra estos 
elementos mediante el uso del conocimiento del sistema y del dispositivo de medición, 
la descripción estadística de los ruidos del sistema y cualquier información disponible 
sobre las condiciones iniciales de las variables de interés (Maybeck, 9179).

Para comenzar, se debe recordar que la idea básica del filtro de Kalman es que, 
bajo un conjunto de supuestos, será posible, dado un historial de mediciones de un 
sistema, construir un modelo para el estado del sistema que maximice la probabilidad 
a posteriori de las mediciones previas.

Es posible maximizar la probabilidad a posteriori sin tener un largo historial de 
mediciones. En cambio, es posible actualizar iterativamente el modelo de estado de 
un sistema y mantener únicamente ese modelo para la siguiente iteración (Bradski, 
2008). Estas iteraciones se forman principalmente mediante procesos de predicción, 
medición y actualización del estado.

Sin embargo, se debe precisar que el filtro de Kalman se basa en tres supuestos:
1.	 	La evolución del espacio de estados es lineal.
2.	 	Los errores o ruidos sujetos a las mediciones son “blancos”.
3.	 	Este ruido también es gaussiano.

En otras palabras, el primer supuesto implica que el estado del sistema en el tiempo t 
puede modelarse como una matriz multiplicada por el estado en el tiempo t − 1. Esto 
es positivo porque los sistemas lineales son más fáciles de manipular y prácticos que 
los no lineales (Sánchez et al., 2018). Los supuestos adicionales de que el ruido es 
blanco y gaussiano implican que el ruido no está correlacionado a lo largo del tiempo y 
que su amplitud puede modelarse con precisión utilizando una media y una covarianza 
(es decir, el ruido se describe completamente por sus momentos primero y segundo)
(Bradski, 2008).

Procedimiento de modelado-estimación

La figura 3 muestra un proceso iterativo del filtro de Kalman donde se muestra que 
el modelo se va ajustando con base en el tiempo y y las nuevas medidas que se van 
tomando en el tiempo para hacer el ajuste y la corrección necesaria, como se describe 
a continuación.
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Figura 3 Proceso iterativo del filtro de Kalman. Fuente: (Bradski, 2008)

En un instante t1, se determina la posición de un objeto p1. Sin embargo, debido a 
las imprecisiones inherentes del dispositivo de medición (como los cambios en la 
intensidad de la luz) el resultado de las mediciones es algo incierto. Por lo tanto, se 
determina que la precisión es tal que la desviación estándar involucrada es σ1 (una 
sola variable). Por lo tanto, se puede establecer la probabilidad condicional, el valor 
en el instante t1, condicionado al valor observado de la medición σ1; es decir, se tiene 
la probabilidad de que p tenga un valor, con base en la medición realizada. En este 
momento, se estima mejor p1 = p1 y la varianza σ2

p1= σ2
p1.

Posteriormente, se realiza otra medición basada en cualquier opción de segmentación 
de objetos presentados en la sección anterior en el tiempo t2, obteniendo así p2  con una 
varianza σ2

p2 (que se supone menor que la primera). Para combinar estas mediciones 
y obtener una nueva con su propia variación (distribución gaussiana), se utilizan las 
ecuaciones 2 y 3, donde se observa que el nuevo valor es simplemente una combinación 
ponderada de las dos medias, y la ponderación se determina por las incertidumbres 
relativas de ambas mediciones (media condicional). El peso en estas ecuaciones se 
puede expresar como: si σ2

p1 es mayor que σ2
p2 (es decir, mayor variabilidad), entonces 

σ2
p2 tendría mayor peso porque tiene menor variabilidad. Además, la incertidumbre en 

la estimación del nuevo p se ha reducido al combinar ambos datos (Maybeck, 9179).

Ahora que se sabe cómo obtener la siguiente medida, es posible continuar con este 
proceso N veces (N mediciones). Esto se debe a que se pueden combinar las dos 
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Ecuación 2. Estimación de la incertidumbre de la posición

Ecuación 3. Estimación de la incertidumbre de la varianza

primeras, luego la tercera con la combinación de las dos primeras, la cuarta con la 
combinación de las tres primeras, y así sucesivamente (Sánchez et al., 2018). Esto 
es lo que ocurre cuando se rastrea (o da seguimiento) una posición p a lo largo del 
tiempo: se obtiene una medida seguida de otra.

Generalmente, la ecuación 2 se reescribe como la ecuación 4 y la ecuación 3 como la 
ecuación 5, porque  en estas nuevas formas es posible separar la información antigua 
de la nueva. La nueva información (p2-p1) se denomina innovación.

Finalmente, la ecuación 6 muestra el factor de actualización iterativo óptimo, conocido 
como ganancia de actualización K; así se obtiene la forma recursiva descrita en las 

Ecuación 4. Estimación de la nueva posición p

Ecuación 5. Cálculo de la varianza nueva

ecuaciones 7 y 8. Para una explicación más detallada, se sugiere al lector consultar 
a  Maybeck (1979).

Ecuación 6. Estimación de ganancia de actualización K
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Ecuación 7. Estimación de la nueva posición p utilizando la constante K

Ecuación 8. Cálculo de la varianza nueva utilizando la constante K

Resultados

A continuación se muestra un ejemplo de la metodología presentada. En la figura 4 
se muestra un ejemplo de la identificación de vectores de flujo óptico por el método 
un poco denso de Lucas y Kanade. En la figura 4.(a) se muestra un ambiente donde 
un automóvil va en movimiento de izquierda a derecha y un peatón caminando en la 
misma dirección atrás del automóvil. Todo el paisaje es estático excepto esos dos 
objetos. Como se puede observar, el automóvil tiene mucha textura por lo que es más 
fácil identificar las esquinas o buenos puntos para seguir, y se muestran los vectores 
en la magnitud y dirección donde fue el movimiento de un tiempo t a un tiempo t+1. En 
la figura 4 (b) se extraen los vectores y se agrupan por el procedimiento mostrado en 
el módulo de segmentación donde el vector de la cabeza del peatón tiene diferente 
dirección y magnitud respecto del resto de los vectores que representan al automóvil.

En la figura 5 se muestra un ejemplo de la generación de una cubierta convexa en un 
color rojo. Los puntos que delimitan a esta cubierta son los puntos donde se originó el 
movimiento. También se puede observar que dado que del peatón solo se obtuvo un 

Figura 4. Vectores resultantes de un movimiento a través de un proceso de flujo óptico

(a) (b)

Figura 5. Ejemplo de una cubierta convexa a partir de vectores de flujo óptico

vector de la cabeza, no se puede generar una cubierta convexa debido a que, por lo 
menos, se necesitan tres vectores.
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Finalmente la figura 6 muestra un ejemplo del modelo de filtro de Kalman en el 
seguimiento del movimiento del objetol segmentado. En el primer gráfico se hace un 
acercamiento para identificar que si hay un dato atípico entonces el modelo tiene un 
error muy grande pero conforme pasa el tiempo se vuelve a ajustar acercándose a 
los datos azules que son las medidas observadas. En la segunda imagen se observa 
cómo al principio el error (es decir la diferencia entre lo observado y lo filtrado) es muy 
grande, pero a medida que pasa el tiempo la variabilidad y el error se va reduciendo.

Discusión

SI bien en este trabajo se presentan algunas alternativas para los módulos de  
segmentación de objetos, modelado y predicción, se reconoce que las alternativas 
propuestas no son las únicas.

Para el caso del módulo de modelado segmentación, si bien comúnmente se hace 
por color, textura o forma hoy en día existen otros descriptores clásicos, tales como 
BRIEF (Binary Robust Independent Elementary Features), SIFT (Scale-Invariant 
Feature Transform) o SURF (Speeded Up Robust Features). Además, descriptores más 
recientes como FREAK (Fast Retina Keypoint), SIFT, SURF o basados en aprendizaje 
profundo, tales como Deep Descriptors (CNN-based), NetVLAD, o DELF (Deep Local 
Features) que son más robustos, pero costosos computacionalmente. Sin embargo, 
estos descriptores que pueden identificar puntos clave en la imagen, deben contar 
con información a priori de los objetos que se planean seguir.

Para el módulo de modelado, además de usar el filtro de calma es posible utilizar otras 
alternativas de modelado como una regresión lineal simple o cuadrática que permita 
ajustarse al tipo de movimiento en cuestión. Además diferentes tipos de modelado 

Figura 6. Ejemplo de estimaciones y mediciones de filtro de Kalman

basado en identificación de sistemas (Sánchez et al., 2018) puede utilizarse como un 
enfoque particular de un sistema variante en el tiempo.

Modelando movimiento de objetos en cámaras de video



262

Desafíos multidisciplinarios en la construcción de ciudadanía global, social y solidaria: procesos y modelos metodológicos

Conclusiones

En este capítulo se presenta una propuesta metodológica que demuestra ser una 
solución robusta y flexible para el seguimiento y modelado de objetos en movimiento 
en entornos visuales dinámicos. A través del uso de técnicas como segmentación 
por color, forma o textura, es posible extraer objetos relevantes de una escena. El 
análisis de flujo óptico complementa este proceso, permitiendo detectar cambios 
de posición entre imágenes consecutivas y superar limitaciones comunes como el 
problema de la apertura mediante la detección de esquinas. La agrupación de vectores 
y la construcción de cubiertas convexas permiten representar objetos completos, 
incluso cuando su forma cambia con el tiempo.

La incorporación del filtro de Kalman permite predecir de forma eficiente la trayectoria 
futura de los objetos, integrando mediciones sucesivas y reduciendo el impacto de 
posibles errores o ruidos. Esta metodología es especialmente útil en contextos donde 
se requiere tomar decisiones en tiempo real, como la detección de comportamientos 
anómalos en videovigilancia o el seguimiento preciso en sistemas autónomos. 
Además, su estructura modular permite ajustarse a distintos escenarios, optimizando 
su desempeño según las características específicas del entorno. En conjunto, este 
enfoque mejora significativamente la capacidad de comprensión visual de las máquinas 
y su interacción con el mundo real.

Trabajo futuro

El trabajo futuro de este capítulo se presenta en la forma de experimentar con diferentes 
alternativas para conocer cuál se ajusta mejor a las características de las escenas. 
Por ejemplo, si la escena varía mucho de iluminación, entonces una segmentación por 
color no es viable, pero una segmentación basada en descriptores puede ser muy útil.

Además, cualquier mecanismo de modelado que se escoja seguramente tienen 
parámetros que pueden hacer más preciso el modelo, aunque se puede caer en 
sobreajuste. Una exploración para cualquier modelo es la optimización de sus 
hiperparámetros que puede ser realizada con alguna metaherística bioinspirada o 
no-bioinspirada, que permitan seleccionar los mejores valores de los parámetros de 
cada modelo.
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