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Attack and defense techniques for adversarial
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Resumen: El panorama de la ciberseguridad ha evolucionado rapidamente,
presentando riesgos para todos los sistemas informaticos. La inteligencia artificial, en
particular el aprendizaje automatico, ha surgido para mejorar la seguridad preservando
la privacidad de los datos, detectando anomalias y malware, generando confianzay
abordando los desafios de la ciberseguridad. Sin embargo, los adversarios pueden
explotar estas técnicas, lo que ha dado lugar al desarrollo del aprendizaje automatico
adversarial. Nuestro articulo analiza el estado actual del aprendizaje automatico
adversarial mediante una revision de 68 estudios realizados entre 2016 y 2023,
describiendo las técnicas de ataque y defensa, los desafios y las consideraciones. Este
estudio busca apoyar a los investigadores en la mejora de las medidas de seguridad
basadas en IAy el fomento de avances en este campo para lograr soluciones mas
robustas.
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Abstract: The cybersecurity landscape has rapidly evolved, posing risks to all computer
systems. Artificial Intelligence, particularly Machine Learning, has emerged to enhance
security by preserving data privacy, detecting anomalies and malware, establishing
trust, and tackling cybersecurity challenges. However, adversaries can exploit these
techniques, leading to the development of Adversarial Machine Learning. Our paper
analyzes the current state of Adversarial Machine Learning through a review of 68
studies from 2016 to 2023, outlining attack and defense techniques, challenges, and
considerations. This study aims to support researchers in enhancing Al-based security
measures and fostering advancements in the field for more robust solutions.
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Introduction

In the age of cloud computing, security challenges like data privacy and system
vulnerabilities are critical concerns (Aljumah & Ahanger, 2020). Artificial Intelligence,
especially Machine Learning (ML), offers promising solutions for boosting security
by detecting threats and analyzing anomalies (Badiger & Shyam, 2023). Despite
advancements in ML security techniques for cloud computing, adversaries constantly
evolve tactics to exploit these safeguards. The emerging field of Adversarial Machine
Learning (AML) focuses on studying such threats and defenses against them. Major
tech companies are investing in safeguarding ML systems against AML threats. AML
traces back to the early 2000s when statistical (Frederickson, Moore, Dawson, & Polikar,
2018). classifiers identified spam. This paper aims to explore AML vulnerabilities, attack
techniques, mitigation strategies, and evaluation metrics through a systematic literature
review and thematic synthesis. The study provides a foundational understanding of
AML for securing ML-based systems, discussing methods, results, challenges, and
future research.

Research method

To examine AML challenges and considerations from attack and defense angles,
we conducted a systematic literature review following the methodology outlined by
Kitchenham et al. (2015), originally designed for Software Engineering but adaptable
across computer science domains. We supplemented this approach with additional
methods, including search, selection, snowballing, data extraction, and synthesis
processes.

Search process

To conductthe literature review, we started by defining the following research questions:
RQ1. What are the prevailing attack techniques in AML?

RQ2. What are the methods and strategies to mitigate threats in AML?

RQ3. What are the key considerations and challenges involved in implementing AML?

To gather primary studies, our primary approach was automatic search using tailored
search strings. We refined these strings by applying a Quasi-Gold standard method
(H. Zhang, Babar, & Tell, 2011) and manually selecting studies that addressed our
research questions to assess search performance. The final search string selected was:
* ("adversarial machine learning" OR "model poisoning") AND

* ("challenges" OR "opportunities" OR "issues" OR "problems") AND

* ("security" OR "security violation" OR "attack" OR "exploit" OR

« "filtration" OR "exfiltration" OR "defending" OR "mitigation")

Desafios multidisciplinarios en la construccion de ciudadania global, social y solidaria: procesos y modelos metodolégicos

266



Attack and defense techniques for adversarial machine learning

Selection process

In order to select primary studies, we established specific criteria to include or exclude

studies. To ensure the inclusion of up-to-date and relevant research, our study

encompasses literature from 2016 onwards. By focusing on recent studies, we aim

to capture the state-of-the-art advancements in the field. The inclusion criteria are as

follows:

* |C-1: The studyis in English

* |C-2: The year of the study is between 2016 and 2023

+ |C-3: The title and abstract suggest that the study answers at least one research
question

* |C-4: The full text of the study answers at least one research question

On the other hand, we established the exclusion criteria as follows:

« EC-1:The study is a presentation, book chapter, or opinion

» EC-2: The study is a duplicate from another database

+ EC-3:Ifastudy has been updated, we keep the most recent version

The selection process comprised three stages:

« Stage 1: We applied IC-1, IC-2, and EC-1 filters.

« Stage 2: We analyzed the titles and abstracts of the studies and applied the IC-3,
and EC-2 filters.

+ Stage 3: Weread and analyzed the full text of the articles and applied the IC-4, and
EC-3filters.

Snowballing search process

After obtaining primary studies through automatic search, we expanded our collection
via a snowballing process following Wohlin's guidelines (2014). This involved
manual searches through references (backward snowballing) and citations (forward
snowballing), with one iteration of backward snowballing. Each candidate identified
underwent our selection process outlined in the previous section. The final selection
yielded 68 primary studies.

Data extraction process

The data extraction process involves extracting pertinent information from each primary
study that we selected. To facilitate this task, we employed an extraction template, which
includes details such as study ID, title, source URL, authors, year, database source,
keywords, references, and for each research question, the study’s corresponding
answer.
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Synthesis process

To effectively organize the extracted information, we employed a thematic synthesis
process, as outlined by (Cruzes & Dyba, 2011). This method facilitated the identification,
analysis, and reporting of patterns, or themes, within the collected data from the studies.
The steps followed in this process are depicted in Figure 1. The outcome of this process
is a thematic map that highlights the most significant topics in the literature concerning
our research questions. Our thematic map is depicted in Figure 2.

Figure 1. Thematic synthesis process followed, adapted from (Cruzes & Dyba, 2011)
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Results

In this section, we present the results obtained from our systematic literature review.
We begin by discussing the study demographics, including the number of studies found
per year and the distribution of studies across different research questions. Following
this, we will delve into the complete findings, which are based on the thematic map
shown in Figure 2.

Study demographics

Figure 3 depicts an upward trend in studies pertaining to AML, particularly observing a
significant surge since 2020. This trend illustrates the growing interest and recognition
of AML’s significance in data security, emphasizing its relevance and applicability
across differentdomains. In Figure 4, we present the distribution of studies that address
each of the research questions discussed in section 3.1. The results indicate a distinct
inclination towards research focusing on AML attacks, whereas there is comparatively
less emphasis on mitigation techniques for AML threats. Additionally, the challenges
and considerations in implementing AML remains largely unexplored.

Figure 3. Primary studies per year Figure 4. Number of studies by research question
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ML problems

ML, widely used in various fields, faces security threats from malicious actors aiming
to compromise model integrity. Attackers exploit vulnerabilities in ML systems for
information theft, sabotage, or financial gains. Securing ML models remains challenging
as attackers and defenders adapt their methods. With the growing use of ML, users
and professionals must prioritize system protection (Mehta et al., 2022; Wilhjelm &
Younis, 2020; Anthietal., 2021; U. Verma et al., 2022; Usama et al., 2020).

AML threats for ML

AML poses a serious threat to ML applications by targeting model adaptability, security,
and reliability. Adversarial perturbations, a common AML tactic, introduce minimal
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changes to input data to mislead models and yield incorrect outputs, compromising
performance and user trust. Understanding and mitigating such attacks are crucial for
developing secure and reliable intelligent systems across applications (Ayub et al.,
2020; Lagesse et al., 2016; Tang et al., 2019; Usama et al., 2019; Khalid et al., 2019;
Guesmietal., 2022).

AML Attacks

AML attacks vary, with tactics like input manipulation and loss function alteration
compromising model performance. The challenge lies in distinguishing normal from
malicious data, making attacks persistent and demanding evolving mitigation strategies.
Understanding these threats is vital for proactive defense, leading to cost savings and
improved system security (Lin & Biggio, 2021; Guihai & Sikdar, 2021; Mehta et al.,
2022; Hao & Tao, 2022).

AML attacks on image processing

AML research has primarily focused on computer vision, particularly image processing
and neural networks, with applications in biometrics, watermarking, and anomaly
detection. Adversarial attacks aim to deceive models, especially in image classification
where Deep Learning is highly effective but susceptible to misclassification due to
adversarial examples. These attacks involve subtle image manipulations orintroducing
imperceptible noise to generate misleading outcomes. Noteworthy examples include
deceiving watermark detectors with substitute models and using adversarial patches for
3D images. Researchers continuously explore new attack methods, such as real-time
adversarial perturbation frameworks for object detection in autonomous vehicles or
sophisticated techniques altering visual perception in camera-based object recognition
systems. Understanding and defending against such attacks are essential for enhancing
the security and reliability of computer vision systems (Hao & Tao, 2022; G. Zhang
& Sikdar, 2022; Shinde & Shah, 2018; Khalid et al., 2019; Seo, Park, & Kang, 2022;
Quiring & Rieck, 2018; Drenkow, Lennon, Wang, & Burlina, 2023; Yoon, Jafarnejadsani,
& Voulgaris, 2023; Man, Li, & Gerdes, 2023).

AML attacks on natural language processing

Adversarial attacks in Natural Language Processing (NLP) pose distinct challenges in
comparison to image processing. (Marullietal., 2021) highlight that attacks developed
forimage systems are ineffective when applied to the vector representations commonly
used in NLP. (Edwards & Rawat, 2020) note that adversarial examples in NLP can
impact model performance by modifying semantics, spelling, or even entire phrases,
although these alterations are often noticeable. For instance, (Cresci, Petrocchi,
Spognardi, & Tognazzi, 2022) describe attacks on fake news detection systems, such
as "TextBugger", which manipulate the content of news articles to deceive classifiers.
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These attacks target the title, content, or source of the article to reverse the classifier’s
outcome.

AML attacks on Wireless Networks

The wireless domain faces emerging security challenges with the rise of ML applications.
Research points to the lack of focus on AML attacks in network traffic classification
due to the difficulty of altering data packets without changing their content. Examples
include a Backdoor poisoning attack affecting ML model behavior in wireless networks
and vulnerabilities of ML-based modulation models and Deep Learning techniques in
autonomous cognitive networks and TOR traffic classification systems, respectively.
Solutions like the "Fast Gradient Sign Method" (FGSM) enhance security by generating
adversarial samples. Attacks on NextG networks leverage AML to disrupt resource
allocation, countered by defenses such as Q-Protect, RandomOpt, RandomTop, and
MisNACK to safeguard against AML threats (Shi, Zeng, & Nguyen, 2019; Davaslioglu
& Sagduyu, 2019; Usama, Asim, et al., 2019; Usama, Qayyum, Qadir, & Al-Fugaha,
2019; E. Catak, Catak, & Moldsvor, 2021; Shi, Sagduyu, Erpek, & Gursoy, 2023).

AML attack on cybersecurity defenses

AML attacks pose unique challenges in cybersecurity, especially in computer security
where complex and evolving ML systems are more susceptible to breaches. Limited
research exists in this area, with examples including DNS server poisoning, attacks
on Intrusion Detection Systems (IDS), malware evasion strategies, SPAM detection
system vulnerabilities, and phishing website detection challenges. Researchers
emphasize defense techniques like adversarial training and the need for robust security
mechanisms in combating such attacks (Shietal., 2019; Yeboah-Oforietal., 2021; Jin,
Tomoishi, & Matsuura, 2019; Anthi etal., 2021; Ayub et al., 2020; Chen, Ye, & Bourlai,
2017; Yuan, Apruzzese, & Conti, 2023).

AML attacks on Quantum ML

Classification models based on Quantum ML provide efficiency in handling large
volumes of data, though they face security challenges akin to traditional models.
(Edwards & Rawat, 2020) warn about the negative impact that adversarial examples
can have on quantum ML models, emphasizing the possibility of attacks like the Fast
Gradient Sign Method (FGSM) and the risk of transfer attacks, although the latter has
not been extensively explored yet.

AML attacks on audio processing

In this domain, adversarial examples have received less exploration but can produce
a significant impact on model performance. (Lin & Biggio, 2021) present a case
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of targeted evasion adversarial attack in audio, specifically aimed at the Mozilla
DeepSpeech speech-to-text recognition system. The inclusion of barely perceptible
noises compromised the accuracy of the model, showing the vulnerability within this
specific context.

Perturbations or adversarial examples

Perturbations play a critical role in AML by injecting malicious data to deceive ML
classifiers, leading to incorrect predictions. These imperceptible manipulations pose
a significant security challenge, especially for Deep Learning systems. Research
pioneers highlighted vulnerabilities in neural networks to such perturbations, impacting
ML system accuracy. Perturbations are crafted to maximize prediction errors and their
transferability between models is noteworthy. Techniques like the Fast Gradient Sign
Method (FGSM) are used for optimal perturbation generation. Perturbations also aid
in obfuscating ML models for security. Recent attack strategies include Cloak & Co-
locate, involving co-locating attacker VMs with victims in the cloud, and manipulating
fraud detection systems through perturbations in training datasets to deceive models
and enable fraudulent activities (Guihai & Sikdar, 2021; McDaniel, Papernot, & Celik,
2016; Ntalampiras, 2023; Szegedy et al., 2013; Crescietal., 2022; Khalid et al., 2019;
Lin & Biggio, 2021; Davaslioglu & Sagduyu, 2019; G. Verma et al., 2018; Nazari et al.,
2023; Paladinietal., 2023).

AML attack taxonomies

We identified various approaches for classifying AML attack techniques, including NIST
Taxonomy, Barrefio's Proposal, Papernot's Categorization, Khalid et al.’s Taxonomy,
and Olney and Karam's Classification. Different ways to categorize AML attacks include
considering the type of security violation such as reliability, integrity, and availability
attacks. Attacks can also be categorized based on specificity (targeted, indiscriminate,
combined attacks), learning phase (testing, training phase attacks), and adversary's
knowledge (white-box, black-box, and gray-box attacks) (Tabassi et al., 2019; Barreno
et al., 2006; Papernot et al., 2016; Khalid et al., 2019; Olney & Karam, 2022; Ma et
al., 2020; Anthi et al., 2021; Mehta et al., 2022; Liu et al., 2020; Khalid et al., 2020; U.
Verma et al., 2022; Ayub et al., 2020).

AML attack strategies

Evasion attacks are a critical focus in AML that manipulate data during the testing
phase to avoid detection withoutimpacting the training process. These attacks involve
introducing noise to test data to create adversarial perturbations, evading detection and
potentially leading to misclassifications. Various methods, such as the Fast Gradient
Sign Method (FGSM), DeepFool, L-BFGS, C&W attack, EnvAttack, JSMA, Mutual
Information, and SIFA, are employed to generate optimal perturbations, evade detection
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systems, and impact machine learning models in different scenarios. Notable examples
include using JSMA in malware classification systems and FGSM in targeted and
untargeted attacks. These evasion attacks pose a significant threat due to their ability
to induce misclassifications without the need to modify the model's structure, ultimately
compromising system security and accuracy (Anthietal., 2021; E. Catak etal., 2021;
Chenetal., 2017; Ebrahimabadietal., 2021; Khalid etal., 2019; Ma et al., 2020; Olney
& Karam, 2022; Venkatesan et al., 2021).

Model poisoning attacks, such as causal attacks, aim to introduce noise and modify
labels during model training to degrade performance across various algorithms like SVM
and Deep Learning (Baracaldo etal., 2018; Chiba et al., 2020; Davaslioglu & Sagduyu,
2019; Lin & Biggio, 2021; Ma et al., 2020; Marulli et al., 2021; Olney & Karam, 2022;
Tianetal., 2022; Venkatesan etal., 2021; U. Verma et al., 2022). Backdoor attacks and
Neural Trojans are integral to such poisoning tactics, posing significant security risks
and manipulating models during both training and testing phases (Baracaldo et al.,
2018; Davaslioglu & Sagduyu, 2019; Lin & Biggio, 2021; Marulliet al., 2021; Olney &
Karam, 2022). Transfer attacks leverage the transferability of adversarial perturbations
across models, emphasizing the need for robust defenses against these insidious
threats (Lin & Biggio, 2021; Olney & Karam, 2022; Usama et al., 2020; U. Verma et
al., 2022; Papernot et al., 2016; Edwards & Rawat, 2020; Quiring & Rieck, 2018; G.
Zhang & Sikdar, 2022).

Adversarial perturbations not only pose a threat to ML models but can also be used
to enhance their robustness (Cresci et al., 2022). Researchers have identified AML
attacks as potential defensive techniques (Ebrahimabadi et al., 2021). For example,
(Yilmaz & Siraj, 2021) presentAMLODA, a model that seeks to hide patterns of electricity
consumption through minimal and imperceptible data perturbations. (Ebrahimabadi
et al., 2021) provide another example where poisoning Challenge-Response
transmissions between |oT devices and a server is suggested as a means to prevent
replay or spoofing attacks. (G. Vermaetal., 2018) propose a method for a defender to
achieve their obfuscation objectives using the L-BF GS attack, generating perturbations
that make a sample virtually indistinguishable from the original in terms of packet size.

AML mitigation techniques

To defend ML models against adversarial attacks, strategies like gradient masking,
robust optimization, and adversarial detection are crucial (Ma et al., 2020; U.Verma
et al., 2022). Detection and prevention defenses, reactive defenses, and proactive
defenses are implemented to mitigate the impact of AML attacks (Jinetal., 2019; Usama
et al., 2020). Techniques like Hiding the Probability Vector and data obfuscation are
effective in countering black-box attacks and concealing network patterns for enhanced
security (Khalid et al., 2020; G. Verma et al., 2018). Threat analysis plays a pivotal
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role in understanding threats and implementing appropriate security measures (Lin
& Biggio, 2021).

To defend against adversarial attacks, proactive strategies in AML like distillation,
adversarial training, feature extraction, and incorporating valid samples into datasets
are crucial (Lin & Biggio, 2021; Usama et al., 2020; Ma et al., 2020). Adversarial training,
introduced by Goodfellow etal. (2014) and enhanced by Huang et al. (2015), enhances
model robustness against perturbations and is effective across various applications
(Anthietal., 2021; Liu etal., 2020; Tian et al., 2021; Yilmaz, Siraj, & Ulybyshev, 2020;
U.Vermaetal., 2022; E. Catak et al., 2021; Tang et al., 2019). Defensive distillation
counters adversarial perturbations in neural networks, offering advantages such as
reduced network size and computational costs (Papernotetal., 2015; U. Vermaetal.,
2022; F. O. Catak et al., 2022). Data filtering by Baracaldo et al. (2018) segregates
malicious data, while detection methods aim to identify adversarial perturbations in
training data, highlighting the importance of robust defenses in ML systems (W. Li et
al., 2022; Anthi et al., 2021). Other techniques such as feature compression, noise
reduction, depolarization, ROSA, Dual Model Divergence, and Hierarchical Clustering
further enhance model security and resilience against attacks (Edwards & Rawat,
2020; Zhao, Yue, & Wang, 2023; Aboutalebi, Shafiee, Tai, & Wong, 2023; McCarthy,
Ghadafi, Andriotis, & Legg, 2023).

Traditional security techniques against AML

There are traditional techniques that can enhance the robustness and resistance to
attacks in ML systems, even though they were not explicitly designed to counter AML.
These techniques provide an additional layer of defense against AML attacks. However,
itis crucial to recognize that in practical scenarios, these techniques may be inadequate
(U.Vermaetal., 2022). One strategy within this category is the analysis of training data,
where potentially malicious data is identified by examining its origin and associated
metadata (Baracaldo et al., 2018). Another strategy is the refinement of the training
process, which aims to smoothen the decision boundaries of the model or estimate
the probability of an input being an adversarial sample based on its characteristics
(McDaniel et al., 2016). Moreover, in their work, (G. Verma et al., 2018) discuss the
use of encryption as a means to eliminate identifiable data in a network traffic classifier
while retaining recognizable features such as packet size and arrival intervals.

AML attack metrics

We identified various attack metrics such as Perturbation Success Rate, ASR Success
Rate, Classification Confidence, Recall, Precision, Specificity, MSE, Perturbation Norm
D, SSIM, CC, F1 Score, Accuracy, False Detection Probability, False Alarm Probability,
Decision Boundary Distance, Minimum Cost for a Successful Attack, Inference Stability,
and Misclassification Rate. These metrics play a crucial role in evaluating the success
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and impact of different adversarial attacks on machine learning models (Liu et al., 2020;
G. Zhang & Sikdar, 2022; Ntalampiras, 2023; Guihai & Sikdar, 2021; Usama et al.,
2019; Marulliet al., 2021; F. O. Catak et al., 2022; Khalid et al., 2020; Yilmaz & Siraj,
2021; Shietal., 2019; Ma et al., 2020).

AML defense metrics

We identified False Positive Rate (FPR) and False Negative Rate (FNR) (Yilmaz & Siraj,
2021): Evaluate AMLODA model performance by measuring incorrect classifications.
Model Resilience (McDaniel etal., 2016): Measures the model's ability to withstand input
perturbations. Robustness (W. Li et al., 2022): Compares the classifier's robustness
under different parameters. Root Mean Square Error (RMSE) (Tang et al., 2019):
Assesses the quality of adversarial training in Neural Networks by calculating prediction
errors.

Challenges and recommendations to implement AML

The practical implementation of AML faces challenges due to lack of actionable
research, evolving adversarial strategies, and discrepancies in security expectations.
Limited interaction between statistical and ML communities complicates the process.
Overcoming these hurdles requires a deep analysis of security relations, which is
complex for organizations (Kumar et al., 2020; W. Li et al., 2022; Yeboah-Ofori et al.,
2021; Zizzo et al., 2019). Implementing AML attacks is hindered by attackers' varying
knowledge levels, particularly in black-box attacks, where understanding the model is
challenging (Ma et al., 2020; Khalid et al., 2020). The intricacies of ML implementations
demand time and expertise, limiting exploration across various practical domains, like
autonomous networks (Usama et al., 2020). Restricted access to model information
impedes security research involving ML models (Wilhjelm & Younis, 2020). Adversarial
perturbations in attacks must remain feasible to avoid irreversibly corrupting samples
(Venkatesan etal., 2021).

Existing literature on defense strategies against AML often lacks adequate mitigation
measures despite growing awareness of the issue (Anthi et al., 2021). Addressing
this challenge is an ongoing battle as attackers constantly create new ways to bypass
defenses, perpetuating a cycle (Usamaetal., 2020). Implementing effective solutions is
complex and requires deep understanding of security measures and model operations
(Anthietal., 2021). For example, excessive use of samples in Adversarial Training can
impact model accuracy, aligning classifications with adversarial patterns (X. Lietal.,
2020; Simion, Gavrilut, & Luchian, 2019). Despite the hurdles, developing impactful
defenses is feasible as attackers face limitations in targeting models, and the field has
seen significant advancements (Usama et al., 2020).
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Conclusions and future work

ML systems' significance, especially in cloud computing, has led to increased
vulnerability to advanced threats that traditional mitigation techniques may not address
adequately. AML is now crucial in cybersecurity, safeguarding ML systems at scale in
cloud infrastructures. AML attacks can severely affect ML systems, evolving rapidly to
include subtle data manipulation and nearly undetectable perturbations.

While AML research offers mitigation measures, defense strategies are limited
compared to attack techniques, indicating a need for more attention to developing
innovative defenses. Common defense strategies like Adversarial Training are
prevalent, highlighting the necessity for both proven and innovative defense approaches
to combat evolving AML threats.

Future plans involve a more extensive study on AML, exploring industry standards
and grey literature like arXiv to gain insights into variations between academic and
industry AML approaches.
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